4.1

4.0 SAMPLING METHODS
4.1 Introduction

One ofthe weaknesses inecology today isthat too many investigators
fail to realize the importance of sampling. A logical reason for this difficulty is
that studies are often centered onone or two study area, so that the
investigator tends toforget that he is infact studying asample from some
larger population. This may not beseen as ahandicap uatil it becomes
necessary tattempt to extendthe results ofthe study to thelarger area. The
perceptive observer mayhén suddenly realize that there really isn'tmuch
basis for such an extrapolation, unless he does infact have data from a
number of sibareas (i.e., a representative sample) on which tobase the
extrapolation and to provide a basis for assessing its validity.

The intent here is to provide a brief overview sdmpling methodology.
Most of the material follows the lines &furvey sampling methods, as given in
much more detail by Cochran (1977). Thompson (1992) includes methods of
particular interest in ecology. The very basic features are those of an
elementary statistics course.Most students will prefer to refer to farliar
textbooks for these aspects.The essential material has to do with some
elementary statistical conceptsand a few standard distributions, mainly the
binomial, hypergeometric, Poisson, andnormal. Stidents not familiar with
these distributions and the basicrules of probability should look them up in
one of the elementaryeferences. Abrief sketch ofthe statistical background
appears also in Chapter 1.

4.2 Simple random sampling

The main complication in defining simple random sampling isone of
defining the meaning of the word "random". Our approach is that of
probability theory, in which it is assumed tha&very sampling unit (some sort
of explicitly defined entity) has the same probabilifghance) of beingdrawn
into the sample. The mechanics ofdrawing arandom sample then depend on
giving each unitthe samechance of inclusion in a@ample while keeping the
choices independent ofone anotlker. The standard procedure is toassign a
number toeach wunit in the population, and to refer to #&able of random
numbers as a device for selecting the sample.

Once the sample has been drawn and measurementte mn thesample
units, various problems of analysis othe datamust be dealt with.However,
procedures for analysis ofthe dataneed to beconsidered wll in advance of
the sampling to be surethat the right kinds of data arecollected. That is, the
investigator must first prepare a samplimgan, which designates exdly how
the sample will be obtained. Secondly, there should be adefinite plan for the
analysis ofthe resulting data, specifying what statistical analyses will be
carried out, and what will be done if aparticular kind of result isobtained in
the analysis. Many ofthe problems in fieldresearch are caused by the lack of
such a study design. It ag be objectedthat one cannot producesuch a plan if
it is not known in advance howthe study will turn out. There are several
answers tothis objection. One isthat few studies areconducted in comletely
new situatons. Wually there are previous investigations that can beused in
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the design stages, and data thlatn be used to tedtoth the sampling plan and
the analytical procedures.

4.3 The finite population correction

The estimated variance of amean for sampling without replacement
from a finite population is:

2 - 2
ax) == (A=< gy (4.1)

and the finite population correction isjust the quantity in brackets, or one
minus the fraction of the population actually sampled (frequently designated
as f). Thus when nearly all of the population is @aken into the sample, the
variance of the estimated mean becomes very small, as it logically should.

When the fraction of the population sampled is smll, this equation
implies that size of the population has little effect on the standard error and
thus on confidence limits. This is aresult that comes as asurprise tomany
people, whointuitively suppose thatbigger samples are required for very
large populations. This is, however, simply not true. A large population may, of
course, offer more logisticoroblems in samplingand thus be more expensive
to sample.

As a general rule of thumb, when the sampling fraction isless than
about 5%, it is customary to neglect the finite population correction factor, and
treat the sample as though it had been obtained by sampling with
replacement. Sanlipg with replacement refers to circumstances where
objects can be @wn from the population one at a time andreplaced before
the next object is drawn. With such @rocess, probabilities remain unchanged
as the drawing proceeds, making calculations much simpler than if
replacement does not occur, when removal of oméividual changes the odds
on selecting others in the next draw.

Students whose statistical training has come from courses inwhich
hypothesis testing was mainly emphasized maynot have encountered the
notion of a finite population corregon. This is because most tests of
hypotheses are formulated onthe basis ofsampling from an infinitely large
population, or on the basis of sampling with replacement.

4.4 Confidence intervals

Ideally, one wouldlike to be able toknow how far "off* a particular
estimate is from the true paameter value. Statistical methods offer nsuch
utopian result, and the best that we can do is to makeobability statements
that apply to thelong-run of future trials, or tosome hyothetical population
just like the onecurrently under study. These take thdorm of confidence
limits, which are a statement of the following kind:

MR <p<Xyl=1-a (4.2)

where X denotes the lower confidence linit, Xy the upper, and the
probability that the true, but unknown, value () of the random variable of
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interest will fall between these limits is 1 «. The properinterpretation of this
statement isthat avery large number of repetitions othe "experiment" at
hand would yield confidence limits that include the true, but unknown, pin a

fraction 1 - a of the trials. It must beemphasizedthat the statement cannot be
interpreted agertaining to asingle set of sampling results that are in hand.

Such astatement would beidiculous becausethe confidence interval then
either includes the true value or it @es not,and no probability isinvolved--

it's just that we have noway of knowing where the true valuelies. Hence we

have to adopt some sort of long-run view of the "odds on being right."

One of the most common mistakes in reporting tesults of astatistical
analysis isto assert that "the probability is | -a that the hypothesis is fade".
Just as wth the confidence limits statement above, atestable hypothesis is
either true or false,but there is noneed for statistical analysis ifone knows
the answer. If the answer is not known, then ttatistical approach attempts
to supply some quantitative assessment ofthe "odds" for and against the
hypothesis. The problem that many people have withthis is that they have
been adronished from childhood to "make up your mind". Suchdecisions
should bestated as delief based on theevidence, but announced separately
from the probability statements used to assess the evidence.

Most investigators tend to use confidence limits that are symmatric
about the estimate. Nodoubt this is aconsequence ofhe @mmon use of the
symmetric normal distribution, which leadsne to tend tocut df about a/2 of
the probability distribution oneach side ofthe mean, and thus get symmetric
limits. In point of fact there is nothing in theory or practice that says that the
limits should besymmetric--all that is required isthat there be 1 -a of the
distribution within the limits. Aso, setting limits for a distribution like the
Poisson is likely to result ilmsymmetric limits. Onereason isthe difficulty of
cutting off an exact fraction (a) of the distribution when one must set the
limits in terms of integer values. This difficulty can quickly lappreciated by
trying some examples with tables of the Poisson distribution.

For ease in understanding and rememberingthe procedure for
obtaining confidence limits, we will use the standardized or unit norpwatve,
and reverse the usual proces$ going from some other normal distribution to
the standardized--that is wewow look up avalue (z) in tables of the unit
normal that cuts off the desired proportion, of the distribution. Ifais to be
0.05, then we find z = 1.96, and

X.—H _
S =+1.96 (4.3)

N

S

where X represents upper or lower confidence Ilimit respectively
corresponding with the plus and mmus signs onthe right hand side of the

equation. Thus we have X =p + 1.96 o/\/ﬁ and the probability statement
previously given is satisfied by the corresponding choices @®fwhich are X

and Xy). In practice, it is necessary to substitute for p.



4.4

The above results assume that one knows, which is almost always not
the case. |If thesample size isabout 30 or more, iteally doesn't matter much,

in that s¥n  then provides an adequate estimate of the standard error

(o/\/ﬁ). If sample size is small, then it is preferable touse tables of the "t"
distribution (instead ofthe unit normal distribution), which make allowance
for uncertainty about thevariance. Values of the t-distribution are available
in EXCEL.

One also needs to bear in mind that the estimates @fsually denoted by
s) that is appropriate depends on whaglantity oneis setting limits on. For a
mean, we proceed aabove, but iflimits on a single observation are to be

secured, then we naturally use the standard deviation, s, in place\/;f s/
Example 4.1 Calculating confidence limts

For "95 percent confidence limts" (a= 0.05), nmany people round
1.96 to 2.0 so that the limts can be calculated fromxg =X iZs/\/F.

Suppose s = 9, n = 16 and X =10. Then we have x¢ = 10 + 2(9)/4, which
can be expressed as 5.5 < pu < 14.5.

4.5 Determining sample size

Determining the sample size required toprovide confidence limits of
preassigned width on a mean &gain a matter of usinghe z values.From the
results above we have:

_+\7—E:xc-p and we let D = |1 - X¢ |
n

where the vertical lines denote"absolute valueof...", sothat Damounts to the
half-width of the desired (symmetric) interval. Hence:

n = (zs/D¥ (4.4)

Another way to approach sample size estimation is toexpress [Drelative to the
mean:

-D ZS

Vn x
n = [z(c.v.)/D(%)P (4.5)

where c.v.= $ix is the coefficient of variation, and D(%) = D/gxpresses D as a
proportion (note that D(%) is used as @roportion, NOT asa percentage). The
utility of this approach isthat we often have anidea of the coefficient of
variation, but may notknow what the mean is likely to be, so it is possible to
set proportionate limits this way. The advance specification can ten be, for
example, that "I want 95% confidence limits no widdran + 20 percent of the
mean".

so that
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When sampling without replacement is important (i.e., when #@mple
is likely to be asignificant proportion ofthe population,say, 5% or are) the
above relationships serve toget an approximate value of the sample size
needed, which can belabelled rp. The final estimate of n ishen obtained

from:

e (4.6)

No
1+ N
This estimate resultsfrom using avariance estimatethat includes the finite
population coefficient as previously described (Equation 4.l).

Exampl e 4.2 Determ ning sanpl e size

Suppose we want snaller (narrower) confidence limts, say 8 < u <
12, in Exanple 4.1. Using Eq.(4.4) D=2, and n = [2(9)/2]2 =81. If an
appreci able fraction of the population is to be sanpled, then the above
result needs to be corrected by using Eq. (4.6). Assunme N = 100, then
we have n = = 81/(1 + 81/100) = 44.8, which may be rounded to n = 45.
Suppose it is required that (% = 0.1 for an approxi mate 95% confi dence

interval of + 20% Then D(% =0. 1:2(9)/10‘\/F ,and n= 324, which exceeds
t he supposed popul ati on size of N=100. But Eqg.(4.6) gives n=76.

4.6 Stratified random sampling

Almost invariably, ecoloists have some advance information about
populations that they wish to sample. This prior knowledge may well be one of
the reasons for rejecting random sampling and substituting some sort of
purposive selection, wherein one chooses sampling units that "look" tobe
representative or typical. There arbpwever, methods thattake into account
advance knowledgeand at the same timerovide the protection against bias
that isgiven by random selection. One such method is to classifyall of the
population units into one ofseveral strata (groups), and to hen take random
and independent samples in each such stratum.

The name, stratified sampling, comes from theclose analogy to the
layering effect seen invarious circumstances, since wenormally attempt to
have the strata represent gradations in value of the random variable of
interest. If one can do firly good job ofsegregating units by magnitude of
the random variable under consideration, hen it is aparent that the
variability to be encountered insampling _within aparticular stratum may be
substantially reduced over that without stratification. Hence greater overall
precision results for a particular total sample size.

Stratified sampling will require somewhat more advance effort than
simple random sampling, but the usual resultthait it turns outto be less extra
effort than one might suppose. The method provides some side benefits in
terms of better understanding of thmaterial being studied, and of thenature
of the problem dealt with. In somecircumstances it may béhat aportion of
the sampling units inthe population are very difficult to reach, orotherwise
expensive tosample. In this case, stratification can specifically take
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differences incost into account, and provide alternative sampling schemes
aimed at getting the most information for the effort expended.

The material here is devoted to axposition ofthe basictechnology in
stratified sampling. Many additional featuresillwbe found in texts like that of
Cochran (1977) and Thompson (1992). Here we will dealwith such things as
how to go about stratifying apopulation, the estimation procedures, various
equations for obtaining variance estimates, and determining sample size.

4.7 Mechanics of stratification

Undoubtedly the most ommon ecological appication of stratified
sampling has to do with locating sampling plots or other measurement
schemes on a map ofragion of interest. The process ofstratification is then
intuitively obvious--one finds away to break the map upinto strata, each of
which is composed of some large number iaflividual sampling units, usually
plots of square orrectangular shape. It might benoted that theunits in one
particular stratum donot have to becontiguous--this is infact one of the
primary advantages of stratification. However, it is advantageous to keep units
in a stratum more or less contiguous ifthe survey is designedfor analytical
purposes (e.g., to make comparisons between strata).

The basic process isjust to assign units to strataaccording to the
available prior information, seeking toget the units in any onestratum as
much alike aspossible in terms ofthe random variable or variables being
studied. The next step isto assign serial numbers toevery unit in each
stratum. This doesnot, of course, require that someone write down all the
numbers--all that is required is a trustworthy scheme for assigning and
finding again any particular number. @ten it will turn out to be simplest to
delineate stratumboundaries with colored pencil and to note thestarting and
ending point of each row of units in a given section of ateatum bywriting
the corresponding numbers onthe map. Sometimes Ilarge blocks can be
counted asthe equivalent number of sampling units, that issampling units
might be mil-acre (or meter-square) plots but the strata may be ade up of
larger units. A little practice soon settles the details for anyparticular set of
conditions.

We use the followingnotation, which follows that of Cochran (1977) for
convenience inreferring tothe much more complete description available
there.

Nh (h=1, 2,..., L) The number of units in the stratum. There are L strata
inal, and N=N + No+ ... + N_

Nh The number of units in thel stratum that are
selected for enumeration (a random sample
of y units from the kh stratum). In most
circumstances W should be at least 4.
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vhi i=1, 2, ..., B) The observed value of the random variable (Y) on the
ith unit of the RN stratum. There arepnsuch
observations taken from théh stratum.

Wh = N The proportion of the total units present in tH8 h
stratum (N units in population; N+ N2 + ... + NL = N).
_yh =2 Yhil ny Average of the sample units from thérstratum.
n
fh :ﬁ The sampling fraction in thet® stratum (i.e., the

fraction of the units in thetA stratum that are actually
examined.

4.8 Estimates from a stratified sample

Since the W, represent the proportion of the total population in theéhn

stratum, they are logical wighting factors for estimating the overall
population mean. The equation is:

TN T WY 1 Wo¥ ot W Y (4.7)

where “yst refers to the mean of a stratified sample.

By the rule for variance ofa linear combination ofindependent random
variables (independent because of the random sampling in separate strata), we
have the variance of the estimate as:

Vlys) = W12V (y 1) + W2V (y 2) + ... + W 2V(y L) (4.8)

This result assumesthat the sampling fraction (f) in each stratum issmall
enough to neglect the finitgpopulation correton. If the fpc isincluded, the
equation for variance in the th stratum is:

)=o) Sy (49)

where @ is obtained from:

Sh=Y (0 =9V /N, -1 (4.10
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These two equations can be combined to get the desired result:
L L
V(¥q) = Z (WS /) - ZV\LSf/ N (4.11)
=1 =1

However, $12 is not a quantity that can be determined from

sampling, being the variance ofthe entire population inthe hth stratum. A
logical procedure is to estimate it from:

57 =3 O -5/, -1 (4.1

which is the usual variance estimate for a simple random sample. |adtegerm

in the equation for V_()ét) is the finite populationcorrection so ifall of the f,
are small (say, less than 5%) this term can be dropped

4.9 Confidence Ilimits

When sample sizes in the several strata are all substantial, the
confidence interval takes on the sameform as we have previously
encountered it for simple random sampling, and can be written as:

stﬁzs(yst)
where 2z isthe value from the unitnormal curve corresponding to the

confidence level wanted, for example z = 1.96 for 0.05. Wenow use 3(3/ st)

or, in this caseits square root, to denote that this is arestimate ofthe true
variance given by Equation (4.11).

When sample sizes for individual stratge small, as is nouncommonly
the case, there is a difficulty brought in by the fact that use of z corresponds to
virtually knowing the true variance. As was notearlier, samples of 30 or so
give close enoughestimates that one doesot need betoo concerned about an
effect on theconfidence limits. With only afew observations inone or more

strata, however, the estimates of stratum variancen2() snay not be smrecise,

and this situation would usually be handled by substituting a "t" value for the z
value, that is, by making use of the t-distribution, which allows for
uncertainty about thevariance estimate. The trouble here isthat we need to

combine the several straturmariances to ®timate V(yst), but it is not proper

to average the various "t" values corresponding tostratum sample sizes (we
would ordinarily look up at-value wth np -1 degrees of freedomfor each
stratum). Cochran (1977:96) and Thompson (1992:106) give a ratherplkoated
expression for calculating an "effective" number of degrees of freedom for use
in this case.
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Exanmpl e 4.3 A caribou census

An exanpl e that incorporates nearly all of the basic elenments in
stratified random sanpling is furnished by an aerial census of Al askan
caribou. Details will be found in a paper by Siniff and Skoog (1964).
We here extract that part which is appropriate for illustration. Six
strata were selected on the basis of prelimnary observations of
rel ative cari bou abundance, and delineated on detailed naps. Sanpling
units were four-square-mle bl ocks, and each such unit wthin each
stratum was assigned a nunber. There were no advance esti mates of
wi t hi n-stratum vari ances avail able, so the stratum standard devi ati ons
(Sh) were assumed proportional to the prelimnary rough estinmates of

popul ation levels in the stratum This provided the follow ng data for
al I ocation according to Equation (4.14):

W hsh |
Stratum N W, SWrsn m(opt.) m (actual)
A 400 572 3000 428 96 98
B 30 .043 2000 .022 5 10
C 61 .087 9000 .195 44 37
D 18 .026 2000 .013 3 6
E 70 100 12000 .299 67 39
F 120 A72 1000 .043 10 21
699 1.000 29000 1.000 225 211

The "optinunt' allocation was based on the total nunber of sanple units
(225) that the investigators believed could be surveyed in the time
avai l abl e. The actual allocation amunted to "hedgi ng" agai nst
uncertainty about the likely values of S, Thus there were several

strata (B, D and F) where the supposed optinum all ocation called for
rather small sanples, so these were increased at the expense of strata
(C and E) where the optimum plan called for censusing a substanti al
fraction of the units in the stratum Survey results were as foll ows
(Nn, W, were as used above, and np as given in the |ast columm above):

Stratum W h@ W‘—S“ W]sh2 YhWh
nh

A 24.1 5,575 18.613 3,189 13.79
B 25.6 4,064 .751 175 1.10
C 267.6 347,556 71.098 30,237 23.28
D 179.0 22,798 2.569 593 4.65
E 293.7 123,578 31.687 12,358 29.37
F 33.2 9,795 13.800 1,685 571

- - 138.518 48,237 77.90

From Equation (4.7), V¥V st is the sumof the |last colum above, or 77.9
cari bou per four-square-mle unit. This is readily converted to a tota
for the area surveyed by nmultiplying by the total nunber of units,

giving (77.9)(699) = 54,450 caribou. The variance estimte (Equation
(4.11) is:
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L L
V(ygp = 2 WhZSh2)/nh - 2 WhShZIN = 138.518 - (48,237/699) = 69.51
h=1 h=1

Confidence limts on the nean may be obtained by assuming z to be equa
to 2 (or 1.96 to be exact, for a= 0.05), since rather substanti al
sanpl es are involved here, in nost strata, giving:

Y ot =+ 2(69.51)1/2 or 77.9 + 16.7 caribou per four-square-nile unit.
For total caribou on the study area, we estimte the variance as:

V(ytot) = N2 v(y g) = (699)2(69.51) = 33,962, 655
and limts are:
54,540 + 2(33, 962, 655)1/2 or 42,885 < Xxtot < 66,195

2

Notice that sp“ increases with increasing yn in the table above.

The investigators plotted 10910 (sh2 ) against 10910 & ph (Siniff and

Skoog, 1964:398) and obtained a regression rel ationship:
y = 1.63 +1.42 x

where y = 10910 (sh2 ) and x = log10 y h- This is equivalent to the
rel ati onshi p:

sp2 = 42.66(y ) 1 42

which mght be used to estimate variances in planning sinilar surveys.
However, it is inportant to renenber that size of the sanpling unit (4
sq. m. in this case) will affect such a rel ationship

Example 4.4 A mortality survey

A M chi gan study of over-winter |osses of whitetailed deer
(Whitl ock and Eberhardt, 1956) provides an exanple where the finite
popul ation correction is negligible. In this case, nearly 19,000 square
mles (all of the northern | ower peninsula of Mchigan) were classified
into five strata on the basis of estimates made by field biologists.
The primary units were half-sections (one-half square mle), but these
were subsanpled in the actual search by using a strip 88 yards wide laid
out as a rectangular course 1/2 mle long and 1/4 nmle wide. Wdth of
the strip was based on use of four-nan teans, with each individua
responsi bl e for searching a 22 yard wide interval. Various
conplications were involved in the design inasnmuch as it was necessary
to consider prospects for mssing dead deer on the strip, the nunber of
men available in various locations (and transportation), the necessity
for one man to act as conpass-nman, need for a biologist in each crew,
and so on.

Advance data from a previous survey of an area of high nortality

suggested that the coefficient of variation (s/x ) mght be about 1.30,
so estimates of Shp were obtained by multiplying 1.3 tinmes an estimated
nunber of deer to be found on each plot (these guesses were nade in the
process of setting up strata).
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It was decided that about 110 plots could be surveyed with available
manpower so the allocation was devised as follows:

Stratum Expected Expected losses Square p VWistimate Preliminary
losses per expressed as miles in nof S allocation
sq. mile___dead deer/plot stratum

I 20+ 3.75 408 .0220 4.88 23

I 10-20 1.88 1,048 .0566 2.44 29

" 5-10 .94 2,293.5 1240 1.22 32

v 1-5 31 5,567.5 .3010 40 25

\Y 0-1 .01 9,181.5 4964 .01 1
18,498.5 1.0000 110

The al l ocation again followed Equation (4.14) but four plots were
added to stratumV, giving 114 in all, of which 113 were actually
searched (one plot was conpletely flooded at the tineof the survey).
Survey results were:

. 5, -
Stratum R Sh Yn Contribution to  Coefficient of Sh“/ Y p
to Wy __variation
| 23 2.146 1.826 .000097 1.18 2.52
Il 29 1.082 621 .000129 1.74 1.88
1 31 724 484 .000260 1.50 1.08
v 25 541 .280 .001062 1.93 1.04
V 5 -- 0.00 .00 -- --
113 .001548

In this instance, only very small fractions of each stratumwere
searched so Equation (4.11) reduces (by dropping the right-hand term
to:

5

V(yst) =2 (Wn?2 Sh2)/my
h=1

and the individual terns are listed under the heading "Contribution to

v(g/ st)" so that one can see in which stratumnmost of the variability

turns up. Conparing the expected | osses and the y h 1t becones

apparent that the over-estimates were largely in strata | and Il, which
was not especially surprising since the winter turned out to be m | der
than antici pated when the survey was planned, and starvation | osses were
correspondingly | ower (nmmjor starvation areas nearly all were in strata
I and I1).

The coefficients of variation in the above table show t he advance

estimate to be somewhat | ow The | ast colum of the table gives sh2/ Y h
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which is the "index of dispersion" and is unity (within sanpling or
"chance" errors) for a Poisson distribution. This suggests that such a
distribution (i.e., wholly random di spersal of dead deer) may apply to
strata Il and 1V, in which case the S, for allocation m ght sinply have
been taken as equal to the square roots of the expected nunbers of deer
per plot.

4.10 Allocating the sample to strata

We have thusfar gotten the cart before the horse, having considered
how to analyze sample resultwithout considering howthe total sample ought
to be distributed over the strata. Two kinds of allocation are in @mmon use.
The first is perhaps Wat one wuld expect to dowithout any advance
information about the variability in various strata, that is, distribute the
sample in proportion to thesize of the strata ("proportional allocation"). This
is also known as aself-weighting sample, sincefractions going into each
stratum will be equal to W, sothat a simple mean addll of the sampleresults
will be equal to the weighted mean previously given. In this case wehave
Nnh/Nhp = f = n/N so that the sampling fraction is the same in sathta.This éads

to a simpler expression for the variance:
L

- 1-f
Vi =—— 2 WpSh2 (4.13)
h=1
and we again have to substitute sample estimates ﬁ@r-s

Proportional allocation is easy taccomplish andto analyze, but often is
not a very efficient way to use samplinggsources. Inmost ecological work it
turns out that the variance and mean tend toincrease together, sthat the
strata likely will have rather different variances,and propeotional allocation
will then undersample some strata and oversample dters. An allocation
which allows for the effect of differences instratum variances isthe scheme

called "optimal allocation”. This method can be shown to minimize Yiyfor a
fixed n. Optimum allocation is given by the following relationship:

L
h B NWhSH/ 2 WhSh (4.14)
h=1
Of course use of the formula demands atleast a guess at the hS In many
studies, there will be some preliminary information about the magnitude of
variances tobe encountered, quite often in the form ofcoefficients of
variation, which may be applied tothe expected stratum neans toget an

estimate of stratum standard deviations. Hlso turns out that this kind of
allocation isnot too sensitive to errors imdvance estimates of f so one can

usually expect to doa better job with this method so long as the stratum
variances ddiffer appreciably and the guessed values ofpSare in theright

"ballpark".In  many natural populationghe stratum wth the lowestmean can
be expected to haveroughly aPoisson distribution of individuals (assuming
the purpose ofthe survey is to stimate total individuals) sothe investigator
can set that variance equal to the expected mean density, and go ontlirene
on the basis of anyinformation about how variability increases with the
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means of the remaining strata.

One further feature of allocation worth considering here is the
circumstance where sampling s differ among strata.Perhaps the sinplest
assumption is that total cost of thesampling can be written as:

L
cost=¢ + 2 Chhh (4.15)
h=1
where ¢ represents the cost of measuring each sample unistiatum h, the
ch are not all equal, andgcis a fixed or"overhead" cost. In this case,Cochran
(1977:97) shows that the allocation should be:

L
nWhpS
h nvh_ﬂ/z WhShAlch (4.16)
ch
h=1

sothat the number ofsamples in astratum depends onthe stratum size, its
variability, and cost of sampling. One takes more samples in large and
variable strata, but also increases sample size if sampling ischeap in the
stratum.This kind of allocation can berather useful in dealing with sampling
problems where eitheraccess ormeasurement may bquite dfficult for part
of the population. It is worthnoting that other kinds of cost functions might
be obtained from knowledge ofthe sampling problem, andspecial albcations
then devised. Cochran (1977) discusses "cost functions" for various
circumstances.

Example 4.5 A deer popul ation estinmate

Counts of "pellet-groups" have been wused to estimate deer
popul ations for many years. Daily defecation rates are renarkably
constant (about 13 groups per day) and over-wi nter accunulations of
pellets can be identified by the underlying mat of |eaves dropped the
previous fall. There is thus a straightforward conversion from nunbers
of pellet-groups to "deer-days" which in turn can be converted to
average popul ation levels for the over-wi nter season. Stratified random
sanmpl ing has been used to conduct such surveys in northern M chigan for
nore than 25 years. About 35,000 square miles are surveyed, requiring
on the order of 500 nan-days of effort. Sone nine separate areas (Gane
Management Districts) are surveyed independently. An example for one
such are (District 7 in 1962; Ryel 1971:131) appears in the follow ng
t abl e:

. : W h2sp?

Stratum Area gg.mi.) ProgdWh) n Yh T -
| 190 .0541 9 65.22 1.7568
Il 425 1211 12 29.25 1.2649
11 1544 4399 34 15.35 1.7803
v 1144 .3259 10 10.70 1.7748
V 207 .0590 1 0.0 --

3510 1.0000 66 - 6.5768.

The overall weighted mean number of groups per sampling unit was
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i’ st = 17.31 with two standard errors being 29.6 percent of that

estimate. Wth the very large areas involved, an appreciable amunt of
time is expended in traveling to the sanpling units. Si nce experience
shows that the individual plots should not be very large (to avoid
m ssing groups in the counts), a cluster sanple is used at each site,
conpri sed of eight individual plots arranged along a half-mle line. For
conveni ence, square niles (sections) serve as the primary sanpling unit,
with a random starting place and distance from the boundary used to
| ocate each systematically arranged cluster of plots.

To reduce the effort required to plan and execute these |arge-
scal e surveys (150 to 200 people nay be involved annually), the sane
pl ots have been used for a nunmber of years in succession. This makes it
possible for the field nen to plan their work efficiently, since they
know the plot location well in advance and can anticipate just when the
plots will be accessible (and free of snow). Ryel (1971:222) calcul ated
the optimum allocation for a nunber of years. Results for the District
used as an illustration above are:

Calculated optimum allocation

Stratum Actual
allocation 1959 1960 1961 1962 1963 1964

I 9 18 14 6 13 4 6
I 12 11 14 21 13 19 18
" 34 27 29 21 26 32 32
v 10 9 9 18 14 11 10

It can thus be seen that the original allocation was, on the average,
quite satisfactory. Two kinds of factors nmay affect these results. One
is that the distribution of deer may change sonewhat from year to year,
in consequence of wi nter weather conditions. Another is that variances
for each stratum are estimates, and thus wll vary sonmewhat due to
chance al one.

4.11 Further remarks on stratified sampling

Cochran (1977), Thompson 1992), and other texts on survey sampling
supply agood deal ofauxiliary information on methods and techniques for
various special cases. A fewpoints that are examined inmore detail inthose
references are summarized here:

(1) Gains in stratified sampling for thestimation of aproportion are usually
not sizable unless the proportion (P) varies sharply from stratum tostratum,
and in most cases, proportional allocation is preferable.

(2) Many surveys are designed tomeasure more than one randomvariable,
whereupon the question of allocation gatemplicated. An initial approach is
to calculate allocation for the variables of main interest separately and
determine whether the several allocationsdiffer appreciably. Ifso, hen it
may be possible todevise some sortof cost function to help in a decision. If
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there are twovariables ofmain interest, hen there are somehandy schemes
for handling the two in a single allocation.

(3) We have not considered how tetermine either the number ofstrata nor

stratum boundaries. Most studies of natural populations will involve the
location of strata onmaps, and thequantity of advance information on the
population will usually be such that theumber ofstrata probably will not be
less than three nor morehan six. A few trial efforts atlaying out strata will
usually resolve most questions of boundaries. Probably the major difficulty
comes up if large areas are to be covered, so thate are anumber ofpeople
involved, each having rather good local knowledge. Then the principal job
turns out to be in getting individuals toagree on Wwat constitute definite
strata, and how they should matt at the junction of two districts where
different people are locally"expert® onthe subject matter. Some onperson
usually has toumpire the decisions, and this can perhaps bedone after
individuals have made up maps reflecting their knowledge.

(4) Sometimes it is possible to make usesofatification after a simplerandom
sample has been taken. Itmust be emphasized that stratification cannot
legitimately be undertaken on thbasis of examiningthe sampleresults, but it

may turn out that it is not possible to assignindividual units to strata until

after they have beensurveyed, that is, the total number of units in each
stratum may be known in advancehut the stratum to which aparticular
sample unit belongs cannot be determined until the measurement is made.

(5) Most experience with naturgpopulations shows thatvariability increases
with the mean. This is fairly sound gounds for recommending that
"optimum" allocation always be cazfully considered before selecting one of
the other possibilities.

4.12 Ratio Estimation

The main results for ratio estimation require that thepulation total of
an auxiliary variate (X) be known, and the correlation between Xand the
variable ofmain interest (Y) is usedalong with the known total to obtain an
estimate of either the mean of Y or its total with greater precision than may be
obtained from simple random sampling of alone. So far, ratio andegression
methods havebeen little used in ecology andresource management surveys,
partially perhaps because of alack of suitable correlated variables with
known totals, but also because manyinvestigators are not familiar with these
methods.

In the usual notation, X is used tepresent the known population total.
Since we have been using X to representamdom variable, Xwill denote the
population total here. The ratio estimate is:
AP | BV
4 =3IXi XT= = XT
X
as an estimator of the population total for Y. Thean value of Y isstimated
by replacing the population total §4 by the mean above.
The population ratio is estimated by:
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A2y
RZXi
If interest isprincipally in the population ratio, then it isnot necessary to
know XT.

An important application ofratio methods is worth mntioning here in
order to provide an illustration of the nature ofthe aboverelationships. This
is the wuse of "strip transects" (discussed in more detail in Chap.5) on
irregularly-shaped abs. A strip transect isjust a bng, narrow plot
extending completely across a studyarea. For present purposes, weassume
that all of the objects ofinterest are counted on each of aumber ofstrips.
Each such transect then constitutes a sample plot. Ifrédggon under study is
rectangular inshape, then each samplglot will have the sme area, and no
adjustment isfor transect length isneeded. However, inmost practical
situations, study areas will be irregular in shape. Stripgnsects across such a
site will thus have different individual areas, presenting aproblem in the
analysis of the data, since plot size is now also a random variable.

It is true that a simple random sample sfrips will provide anunbiased
estimate of the total number of objects onthe study area.The appropriate
random variable is the total number on each strip, and the calculations
proceed aspreviously described for simple random sampling of afinite
population (the total number of possible samplestrips). However, such a
theoretically correct result is of almost no practical interestin dealing with
natural populations, just because suchpopulations exhibit high variability
even with efficient methods ofsampling. We thus cannotafford to bring in
any further variability. Ratio methods can conveniently be used to resolve the
problem simply byregarding the area of eachsample strip as Xsothat Xris
the total area of the study region, amhefting Yj represent the total number of

N

objects on each sampl@lot. We hen have that R estimates the awrage
N

density (number per unit area) observed in the sample, andr isYan estimate
of the total number of objects on the entire study area.

The ratio estmate is biased, but the bias isconsidered unimportant for
large samples. In this case, arule of thumb is n of atleast 30, and the
coefficients of variation of themeans of Xand Y should both Hess han 0.10
(Cochran, 1977:153). Stratificatiorand ratio estimation mayserve roughly the
same purposes, and it is likelthat an effectivestratification could beobtained
through the use of the auxiliaryariable X. Thus in the example given above,
one could stratify the study area into blocks such that thength of potential
sample transect strips is about constant ineach straim. However, the ratio
method provides a"natural" approach in this instance, and is thus the
appropriate choice.

The ratio estimateeffectively assumesthe relationship between Yand X
to be Y = RX + e, where erepresents an"error® component and R is an
unknown constant. In some instances it magt be reasonable tassumethat
the relationship goes through the aigin, so that a regression estimate is
appropriate. This method isalso biased, so thatlarge samplesare generally
recommended. Details are available in Cochran(1977) ,Thompson (1992), and
many other texts on sampling. Before undertaking touse the ratio or
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regression techniques, an investigatorshould have some preliminary
observations (or good general knowledge) that indicate a relationbleipveen
the variable of primaryinterest (y) and anauxiliary variable (x). Afirst step
it plot the data andto note whether the regression lineclearly doesnot go
through the aigin. If this is the case, hen it is advisable tolook into
regression estimation, rather tan using ratio methods. Occasionallythere
may be more han one usefulauxiliary variable andit is then possible to use
multiple regression.

4.13 Variance of ratio estimates

An estimate of the variance of a ratio is given by:
N

VR =T (3 (vi- RXi)2/(N-1)] 4.17)
nx2

i=1
Here f again represents the finite population corredon, and may be
neglected ifn/N isless han about 5 to 10percent. N isthe total number of

units in the population, n,the number inthe sample,and X the population
mean of theauxiliary variate. Note that the summation runsover the entire
population, sothat this is anapproximation tothe "true" variance, and it will
in turn have to be estimated by @quantity that can becalculated from a
sample; that is, weeplace the quantity in the right-hand backets by sample
data, getting:

n
%ﬁ)iléf[2<w-ﬁmewn] (4.18)
nXx
i=1

When interest is in the mean or total of Y, the estimates are as given before:
and variances can be calculated from Equation (4.17) by recalling the thdd

V(aR) :a?V(R), where the constant a is now either- Xor NX , since both of
these quantities are assumedknown, and thus play the part of catants.
Calculation of an estimate of V(Y) is easier in the following equivalent form:

2¢ v R) = n_((ﬁ% [2yi2 + R3xj2 -2 RZy|x|] (4.19)

Note that this is the variance for estimating a total.

Since it isadvisable to checkthat the coefficients of variation of the
means of Y and X are less than 0.10, another form dalculation ofvariability
is:
2(YR) 1f
= [ny + Cxx 2ny] (420)

(Y R)2 ==
YR

where &x, cyy, and gy are the coefficients of variation of y, xand the
analogously defined cross-product term:
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Zxx - MX
yxXe=

(n-1)y

Readers whorefer to Cochran (1977) should note that heused the coefficient
of variation of the mean, e.g.,yg/n.

The squared coefficient of variation of R is often termed the relative

variance, and can beased tocalculate variances ofany of the three estimates
of interest (the coefficient of variation, being a relative quantity, has the

N

N N
same value for R, R, or RT).
Confidence limits can be obtained as before:

N

N A A
Y+zs(YT) or R+ zs(R)

Exanple 4.6 Ratio corrections for variable plot size

A numerical exanple of corrections for different lengths of a
strip-transect is given by Norton-Giffiths (1975). The data are those
froman aerial survey for several species of African "gane". Only
wi | debeest are considered here. The data are as foll ows:

i X iy

Transect Area (%}n No.counted

1 8.2 58

2 13.7 44

3 25.8 175

4 25.2 141

5 21.9 151

6 20.9 144

7 23.0 131

8 19.2 135

9 21.4 104

10 17.5 111

11 19.2 130

12 20.8 136

Totals 236.8 1460

The total area of the study region was 2829 kn?, so the popul ati on
estimate is:

Ny o D _1460 . _
YR= TXj XT ~236.8 2,829 = 17,440 | debeest .

There were 126 possible strips in the area, so that N = 126, n = 12, and
calculations fromEq (4.19) are:

n . N(N-n A n
2(YR) =n4(ﬁ% [5yi2 + R2xi? -2 R2yixi]
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= [126(114)/12(11)][193,262 +(6.18)4,935 - 2(6.16)30,561]
= 436,580.

The standard error is (436,580)1/2 = 661/, which is quite small conpared
to the estinate.

It may be noted that the sanple size (12) is a good deal |ess than
the 30 recomended as a rule of thunb for using ratio estimation.
However, this very likely is an instance where the ratio estimte is
nearly optimal, i.e., the relationship goes through the origin, and the
variance of the counts likely increases with the area of the transects.
Hence, it seens quite reasonable to neglect the n = 30 rule. Density
per unit area is estimated by:

N

R = 1460/236.8 = 6.16 wil debeest per kn?.

4.14 Double sampling

The major problem with ratio estimation in ecological studiesust that
there are various situations wherthe method ispotentially useful, but atotal
for the auxiliary variable isnot known exactly. Many of thesesituations do
not seem to fitneatly into the present methodologyof survey sampling, but it
does seem that doublesampling comes closeenough to provide a useful
framework for examiningthe problems and auseful starting place for much-
needed research. The basic idisajust thatof the ratio estimation sheme. We
have arandom variable ofprimary interest (Y) and an auxiliary variable (X)
known to be well-correlated with Y. The missing item iskreown total for this
auxiliary variable ().

In the instances of interest here, nmeasurements ofthe auxiliary
variable (X) are either ary inexpensiveto obtain, or are readily available for
a large sample taken over the studggion. A convenientexample is thatused
to describe ratio estimation; the use of strip transects. We now suppose that the
total area of the region under study is niatown. If the area ismapped, then
it is obviously an inexpensive process to make a large number of
measurements of the lengths of potential transect lines from the map. One can
thus come very close toestimating the total area (X) by working with the
map. If we denote this estimated total asg,Xhen double sampling proceeds in
just the same manner as ratio estimation, i.e.,
n 2Yi o,
T IX| XT
but it is now necessary to make someowlance invariance estimation for the
fact that the total(X'T) of the auxiliary variable is not known exactly.

Eberhardt and Simmong1987) conducted some monte carlo studies tsuggest
when double sampling might still be useful under this limitation.

If the study region ismapped, there are usually better ways tomeasure
the total area (e.g., by planimetry). Howevermrious nontrivial examples can
be considered. The survey may beconcerned only with a particular cover
type, which is notmapped. Ifthe work onthe actual sample transect is quite
time-consuming, then it ay be well worthwhile tomeasure only the width of
the cower-type on adrge number of"auxiliary" transects. These widths then
provide an estimate of K
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Another situation where double-sampling may beuseful is where
detailed neasurements need to be made onndividual plots by some time-
consuming process. One example is inestimating total oven-dry biomass of,
say, nonwoody vegetation. The time required for clipping, drying, and
weighing vegetation severelylimits the number ofplots that can be saealt
with. Double-sampling might weil be utilized by wing stem counts as an
auxiliary variable, since thiscan be done on sather krge sample oplots at
low cost. Asimilar prospect exists when chemical analysesare to be done on
vegetation, but in this case it may be desirable to use weights on a dangpgle
of plots as the auxiliary variable.

An essential feature of these examples is thaturate masurements of
the auxiliary variable can be made ineach instance. This appears to be the
basis for the p¥sent theory ofdouble sampling asgiven, for example, by
Cochran (1977. Ch.12). Unfortunately, there are agreat many very useful
potential applications inecological studies that domot seemto quite "fit" the
existing theory. These are situations where the auxiliary variable is an
estimate of some kind, and isubject toeither sampling error, bias, or both.
The biomass ofvegetation example provides a&onvenient case. Rather than
stem counts, the investigator maychoose touse anocular estimate of mimass
on a large sample of plots as an auxiliary variable. With s@xperience (best
gained by guessing weights on asample of plots and hen clipping and
weighing), he my become veryproficient atvisual estimation. The problem
now is that the auxiliary variable issubject both to the "chance" errors
inherent in visual estimation and to any persistent tendency toonsistently
overestimate or underestimate.

Another illustration may be aken from aerial censusing of animals.
Practically all of the available experience shows thataerial obserers tend to
miss a substantiaffraction of the animals on asample unit (very often astrip
transect). Nonetheless, since aerial surveys can be relatively inexpensive,
efforts may be made to "calibrate" th&urveys by usingsome accurate method
to enumerate the number of animals actually ona subsample ofthe plots
surveyed from the air. If it can beupposed that these "gund-truth" counts
are truly without error, then it can be argued that the requirementslioafble-
sampling are met. The aerial survey now providesthe auxiliary variable (X),
while the ground count provides the accurate census (Y) that is wanted.
However, the auxiliary variable aérial count) isclearly going to be subject to
sampling errors, due to alarge variety of causes. Hence we ntonger have
guite the samesituation as whenthe auxiliary variable can be measured
without error. It may be feasible to completely survey the study area from the
air. However, this is still not a known tdal, as arepeat surveyflown under
identical conditions will without much question yield a different total count.

Many readers will have recognizednother problem that was passed by
above. This is that the "accurate" measurement (Y) is seldom achievable in
census wek. Usually the best that can benanaged is an estimatdhat is
believed to be unbiased, but is clearly subject to sampling error. We hlause
both Y and X subject to sampling errors. This circumstance fmdgg in some
major problems in statistical analysis. These problems are particularly
difficult in regression analysis, and remain unresolved for a number of
circumstances ofimportance to ecologists and biolaists. Ricker (1973)
reviewed the situation for problems in fisheries research and management.
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There is thus a need texercise some caution in applying double
sampling in situations where the auxiliary variable issubject tosampling
errors, particularly when regression equations are used. Inmany practical
applications in ecology it seems that the ratioapproach may be quite
satisfactory so we will usually rely on it here.

If it is clear that the relationship des not passthrough the origin and
if the variance appears relatively constant aroundregression line, then it is
likely that the regression method should lesed. However, inthe many cases
where it is necessary toassume sampling errors inthe auxiliary variable, the
usual elementary textbook test for significance ofthe intercept cannot be
trusted. Hence it may be best depend onjudgements as téhe nature of the
relationship and the pattern ofvariability in choosing betweenratio and
regression methods.

4.15 Cluster sampling and subsampling

Cluster samples are likely to be useful in field studies wheneveritben
of interest is pimarily associated with some natwal sampling unit. An
example might be somepecies of insect found only on particular species of
plant. Any interest in enumerating the insects, or instudying some other
measurement, such as the percent odhsects parasitized, requires attention to
the fact thatthey comein clusters. Inpoint of fact, this distinction is often
ignored in practice, and it can be safely said that measures ofvariability
obtained without considering the clustering effect will usually be very
seriously underestimated. Gfourse, inthe example hex describedone might
reasonably use aratio estimate, counting the number ofplants and sampling
some part of them for insect abundance.

In some cases it is possible deal with clustersthat are all comprised of
the same number of individual sampling units. This is a natural way to
approach large-scale area samples, where the "primary sampling unit" may
taken to be a squaremile (section). One may vant to use much smaller plots
(square-meter 0r0.01 ha, perhaps) for the actual measurements, but to
enumerate the variable of intereston several such plots in each square mile
in the sample. One approach isHhen todraw arandom sample of nsquare
miles from the overall area, and to locate m plots(the subsample) ineach of
the selectedprimary units. This is usually termed two-stagesampling. An
important consideration in such schemes is determining how many
subsamples (m) and the totmlumber (n) of primary units totake tominimize
the overall variance (or maximize precision) for a fixed over-all cost.

We will not attempt to detail the procedures for optimum use of
subsampling methods, but it is worth nentioning one scheme for calculating
the overall variance of arestimate, and thusonfidence limits. This is just to
use the subsample results for each primary sampling unit to estimate aotal
for that unit. That is, if there are m plots ineach unit, onejust obtains the
total for those mplots and mitiplies it by the reciprocal ofthe sampling
fraction toget an etimate for the primary unit. The primary unit totals can
then be used directly as random variables tocompute avariance for the
survey total. Thisvariance will reflect both conponents of variability --that
for subsampling (within primary units) and that for differences among
primary sampling units. Wat one loses, otourse, is anyinformation on the

be
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optimum subsampling rate. The samescheme can be usedwhen the clusters
(primary units) are of different sizes (i.e., contain different numbers of
sampling units, as, for example trees inwoodlots). The shortcoming here is
that if the clusters vary considerably insize, that difference will contribute
greatly to the overall variance. This point is most important if there is
additional information on the cluster sizes in the population, but as was
mentioned above, one might then be able to use ratio methods.

Subsampling schemes are often conveniently used to combine
systematic and random sampling. Inthe example above ofrandomly selected
sections (square miles) which are then subsampled, it ioften possible to
reduce the labor involved if the primary units (sections) are selected at
random (usually in astratified sampling plan) and aseries of plots located
systematically along a transect within each section as subsamples. highsly
desirable that the transect starting points berandomly selected toavoid any
bias due to edge effects or such things as old fencelines in the sections.

Subsampling schemes can involve several stages, and various
complexities of estimation. One might for example, use astratified random
sample of square nles, locate subsampling plots in each randomly drawn
section, and hen elect toexamine only arandom sample ofindividual plants
on each plot for the variable of interest, which mht in turn involve
measurements subject terror. Obviously, the statistical analysis obuch data
can be quite complicated. One way to simplify matters a greatdeal is toresort
to jackknifing or bootstrapping.

Sampling in two (or rore) stages ismlso worth considering when there
is uncertainty about theaccuracy ofthe method for making measurements, as
is so often the case inestimating the abundance ofanimal populations. It is
usually the casethat population density will vary considerably over large
areas, and the investigator may havereasonably good notion of how density
varies wth habitat and so on (or this may be major item ofinterest). It is
then logical touse astratified random sampling scheme tolocate primary
sampling units on which the actual measurements of density willattempted.
This doesnot, of course, reduceany uncertainty inthe actual measurement
method, but it does keep the area differences from compounding matters.

Example 4.7 A cluster sanpling exanple

One sinmple exanple of cluster sanpling was nentioned in Exanple
4.5 (stratified sanpling). The "primary sanpling units" (square mles)
were sel ected at random and then subsanpled with a cluster of eight
snmall plots. Al that is needed for analysis of the resulting data is
just to multiply the total for the eight subsanples by a "raising
factor" or "blowup factor", which is sinply the reciprocal of the
sampling rate. In the exanple used, the individual plots were each 1/50
of an acre, hence the necessary adjustnent factor is: 640/(8/50) =
4000. Once this is done, the remaining anal ysis proceeds as though no
subsanpl i ng had taken place. Skeptics may need to do a little al gebraic
mani pul ation at this point. Wen subsanpling rates are not constant,
t hi ngs becone sonmewhat nore conplicated, and a sanple survey text should
be consulted for details. However, if the subsanpling rate does not vary
greatly, the sane procedures can be used wi thout elaboration. Al that
happens is that one overestimtes the variance, in nost situations. But
if the subsanpling rate varies considerably and/or is related to size of
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the primary sanpling unit, then by all nmeans consult a textbook on
sanpling or a statistician.

Supposi ng constant size of the primary sanpling unit, and a
constant subsanpling unit (the case nost likely in ordinary
applications) the main question to be settled is "Wiat is the best
subsanpling rate?". As usual, answers depend on relative costs. That
is, a particular effort (hence cost) is required to survey an individua
sampling unit (i.e., one plot in the exanple), while a separate cost is
engendered by the tine and travel going fromone primary sanpling unit
to the next. For a given total expenditure for the entire survey, the
opti mum subsanpling rate is that which mnimzes the overall variance
gi ven the above two costs

Si nce natural popul ations exhibit a sonewhat frustrating tendency
for variances to change nonlinearly with size of the sanpling unit (plot
size), a sinple equation for subsanpling rate is not available. Wat's
really needed is a "variance law', i.e., a relationship between pl ot
size and variance. To obtain such a relationship, one has to run a
speci al study using several plot sizes. Then it becones possible to
i ncorporate costs and get on with the business at hand by consulting
Cochran (1977, Ch. 9). As we noted earlier, the kind of neasurenent
(wei ghts, counts, etc.) and the organi smunder study influence the
"variance | aw' substantially. Hence there are two choices open at this
point. Oneis torun a fairly expensive prelimnary field study, and
thus to manufacture your own "variance law'. The second choice is to
resort to the literature in the appropriate field, seeking papers in
whi ch several different plot sizes have been used. A number of
ref erences along these |ines appear in Eberhardt (1978a). However, it
is clear that this is an area needing rather nore research attention in
ecol ogy.

Exanpl e 4.8 Custer sanpling involving proportions

One of the commonest errors in the ecological literature is an
uncritical acceptance of the binom al distribution as an appropriate
nodel for analysis of proportions in data collected in clusters. It is
the appropriate nodel if, and only if, a sinple random sanpl e of
i ndi vidual s can be obtained. |In practical problens one al nost al ways
col l ects observations as clusters. Wen this is the case, the
clustering effect must be taken into account in order to obtain a
meani ngf ul variance. Very rarely do we encounter a popul ation so well
m xed that clusters are indeed equivalent to sinple random sanples, so
that such an exanple is likelyto be nore of a curiosity than anything
el se.

The sinplest way to deal with cluster sanpling for proportions is

to treat the individual observations as randomvariables. 1In this
i nstance, the appropriate formof the ratio estinmator is:
n
.1 Yi
L X
i=1

where yj denotes the number of individuals in the ith cluster
possessing the attribute of interest, and xj is the total nunber of

individuals in the ith cluster, while n is the nunber of clusters.
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The appropriate variance estimate here is (Cochran 1977:65):

_2(pi-P)?
V(p= n(n-1)
where pij = vyj/Xj, i.e., the observed proportion in the ith ¢cluster

(We here neglect the finite population correction which can be inserted
as a multiplier (1-f) if needed).

An interesting set of data to illustrate behavi or of proportions
in clusters cones froma paper by Johnson and Chapman (1968). This was
a study to estimate the nunber of fur seal pups on a "rookery" on the
Pribilof Islands, off Al aska. A large sanple (4,965) of pups were marked
(in groups) and then clusters of 100 were exam ned (for the proportion
mar ked) at randomy selected sanpling stations. The estinmate of the
total nunmber of pups on the rookery was obtai ned from

N
M
N=""
(P

where N is the population estimate, Mis the nunber marked (4,965) and p
is the nean proportion narked, calculated as in the above exanpl e.

Two ways of estimating the variance were used. One is based on
the "delta nethod", and is:

N hﬂzvgg)
V(h) =
p4
where v(p ) is obtained as in the above exanple. The second nethod

is that of "interpenetrating" sanpling, in which the sanple is
subdi vided randomy into a nunber of subsanples. A separate estinate of

t he popul ati on size N i is made from each subsanpl e and these are then
averaged for the final estimte, i.e.
r
N l AN
== Z:Ni
r
i=1
and:
N 2
A (Ni - N)
Vb =2 ey

It should be noted that the two estimates of the total population wll
not necessarily be identical, nor will the variance estimtes be the
sane for the two nethods.
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The observed nunbers of marked pups in clusters of 100 (recorded
on two sanpling dates) were:

August 26, 1961 2,0,1, 6, 4, 33, 62, 49, 55, 38, 52, 77,
(25 samples) 85, 54, 27,17, 3, 3,3,2,2,1,0,0, 4.
August 28, 1961 0,0,0,4,0,0,0, 12, 4, 8, 60, 48, 72, 72, 76, 80, 56, 44,
(58 samples) 50, 56, 56, 28, 60, 36,44, 44, 28, 52, 72, 28, 72, 60, 60, 84,
76, 52, 84, 48, 52, 60, 40, 12, 8, 12, 4, 8, 44, 16, 0, 8, 0, O,
4,12,8,0,0,0.

The interpenetrating or replicated sanples were defined as
fol |l ows:

Subsanmples 1, 2, 3: Every third observation of August 26,
begi nning with observations 1, 2, 3, respectively.

Subsanpl es 4-10: Every seventh observation beginning with
observations 1, 2, 3, 4, 5, 6, 7, respectively.

Since there were 25 observations on 26 August, this procedure yields
subsanpl es of size 9, 8, and 8, respectively, while the 58 observations
on 28 August yield two sets of size 9 and 5 of size 8. These data |ead
to the following estimates for the interpenetrating sanpling:

Subsample N

20,497
24,219
20,060
17,455
16,674
17,732
14,391
12,490
13,066
0 14,821

POO~NOUTA,WNPE

Total 171,405

AN AN AN
Averaging gives N2 = 17,140 wth v(N 2) = 1,353,000, while N1 =
N
16,550 with v(N 1) = 2,950, 000.

4.16. Some additional sampling techniques

There are a number of additional techniques students should know
about. Multistage sampling was used in Examples 4.4 and 4.5 where subsamples
of the primary sampling units were actually enumerated. As pointed out there,
it isn’'t necessary to consider the subsampling in obtaining a variance
estimate. All that is needed is to use the subsample data to make estimates for
the primary sampling units and treat those values exactly as one would if the
entire unit had been tallied. However, it may be desirable to consider the
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“within sampling unit” variability in order to do a more efficient job of
designing the survey. This requires more complex equations which are given
in many books on sampling [e.g., Cochran (1977), Thompson (1992)].

Another useful techniqgue uses unequal probabilities in selecting
samples. This approach is exemplified by the line intercept technique
described in Chapter 5, and may be useful in any circumstance where the
probability of selection may vary from unit to unit, either naturally or for
convenience or improved efficiency. Texts or references to sampling
technigues may refer to the Hansen-Hurwitz estimator. This is a method for
using unequal sampling probabilities (see any of the sampling texts for
details).

A relatively recent development is known as adaptive sampling. This
may be a very useful approach when items of interest tend to be clustered, but
in such a manner that there is no readily defined unit that contains all of the
elements of a cluster. The technique provides a means for expanding the
sampled area around primary units where a concentration of the items of
interest is encountered, without biasing the results (which occurs with
certainty if one simply expands the area to include more individuals). Details
appear in Part IV of Thompson (1992) and a more extensive (and more
theoretical) treatment appears in Thompson and Seber (1996).

Another potentially valuable approach is generally known as “kriging”
after the South African mining engineer, Krige, who developed the initial
approach in searching for profitable sites for mining for gold or other
minerals. The approach is now used in petroleum exploration. In both of these
examples drilling exploratory holes can be very expensive and time-
consuming. The methodology thus utilizes spatial correlations among the
available samples to estimate abundance or density on an area. A natural
descriptive phrase thus is “spatial sampling”, and there are many instances
where this may be useful in ecology. Thompson (1992:Part V) gives a useful
summary and references to the extensive literature.

4.17 Exercises
4.17.1 Using a table of random numbers

Drawing a sample with the aid of a table @ndom numbers isnot very
complicated, but the student should try drawing asample of 10individuals
from apopulation o0f20, and another sample of 10 from gopulation 0of1000
(the "populations" can be just theumbers 1-20, and 1-1000). Two approaches
to starting points in the table may beconsidered. One is tosomehow make a
"random" stat, (e.g., by closing one's eyes andtouching apoint on a page to
select random coordinates in the table for a starting point) the other i aok
off sets of digits asthey are used, going on through the table asdifferent
occasions for its use come up. Theatter course ispreferable for repeated
surveys ofthe same areas.Note that samples of 1®ut of asmall population
(like 20) may vyield one or morerepetitions ofrandom numbers. Notice, too,
that one has taise a two digitcolumn of numbers, and many must berejected
with a population of20. This seems to beeven more of aproblem with the
population of 1000, since one should use 4 digits in ordepetonit the number
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1000 to have a chance to lrkawn. However, itis simple toarbitrarily assign
the number 1000 to the 3 digit sequence 000 and thus use tlmeenns (001 to
999, plus 000 for 1000). When working with EXCEL it is convenient touse the
RANDBETWEEN() function, asthat avoids the need tose atable of random
numbers.

4.17.2 Determining sample size

Suppose that we wan®5% confidence limits of about _+15% for the data in
Example 4.1. Whatsample size isrequired if N=1000? Calculate samplesize for
+10% for N = 1000.

4.17.3 An exercise in allocation

As an exercise inallocation, use the values of §2 actually obtained in

the caribou survey in Example 4.5 twalculate anew allocation and compare it
with that actually used.

Another way to guessat the S to use for allocation is toassume the

coefficient of variation (s-/x) is constant. Calculate the c.v.'s for eaztratum,
and try a"typical® values for allocations. Are there substantial differences
between the various schemes? Comment on the results.

4.17.4 Computations for mortality survey

Compute _yst and thetotal mortality estimate for Example 4.4 along with

95% confidence limits. It is often convenient touse 2[V(§/ s»[)]1/2/31 st as

"percentage limits"on survey results.Compute thatvalue andcompare itwith
the same result for example 4.3.

4.17.5 Stratified sampling in a vegetation study

A survey designed tostimate biomass ofnon-woody vegetation in a
sagebrush stand (Eberhardt andRickard 1963) provides an example of a
different approach to stratification and illustrates some of the potential
flexibility of sampling methods. Inthis example, proportional allocation was
used in order to avoicadvance preparations other than marking out the area
well enough toavoid recounting individual plants. Two investigators worked
together, one classifying and tallying each sagebrush plantinto one offive
strata, while the other checked offeach plant ongraph paper on which
certain squares had previously been randomly selected asrepresenting a
plant to be sampled (iwwas thought that about 1/30 of thebushes should be
sampled, so three numbers from 1-90 were desighatetheaming”sample” and
a table ofrandom numbers was used tgproduce the sampling chart). When a
"winner" turned up, the bush was subdivided into from two to five parts, and
one of the parts was randomly selected. If that partwas too large for
weighing, it was subdivided and arandom selection agaimade. Theselected
portion was than clipped, oven-dried and weighed.
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Data from thesurvey are tabulated below. The "subsampling fractions"
show approximately how much of anindividual plant was actually removed.
In the first record in the table, about 1/4was removed, while inthe second
case there were two sub-divisions, and roughly 1/1Q(1/5) times (1/2)] was
actually removed. Thus to stimate total weight for a given plant one would
multiply by 4 or 10. Stratum IV contained the largest plants and tihe plants
actually sampled were sampled at rates /b6 and 1/28,respectively. Of
course the divisions were not exact but any errors in subdividing will enter
into overall variance ofthe survey estimates. There was actually a fifth
stratum, but only one plant was samled, soit has been left out of the
tabulation.

As an exercise, the student should work out an estimate of meanoven-
dry material and itsvariance for the entire sagebrush stand using thedata in
Table 3.I. Calculate anoptimum allocation for a sample of thesize usedhere
(25), and compare withthe proportional allocation (neglect the fpc). Calculate
coefficients of variation. Comment on the results.

Results of stratified sampling of a sagebrush stand.

Stratum Number of bushes Subsampling Oven-dry
in stratum fractions for weight of
sampled bushes sample (9)
I 169 1/4 0.60
1/5,1/2 1.90
1/2,1/2 2.05
1/2,1/2 1.05
1/2 1.20
Il 309 1/4,1/2 1.60
1/5,1/4 3.20
1/5,1/5 1.45
1/3,1/3 4.05
1/3 2.05
1/3,1/2 1.45
1/4,1/4 2.40
1/3,1/2 1.65
1/3,1/4 0.60
i 301 1/5,1/4 1.85
1/5,1/2 2.85
1/5,1/4 7.15
1/5,1/3 2.15
1/3,1/4 4.10
1/4,1/5 3.50
1/4,1/3 5.25
1/5,1/3 5.60
1/3,1/3 1.55
v 57 1/8,1/7 6.05

1/7,1/4 3.60
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4.17.6 Try jackknifing to calculate a standard error for Example 4.6. Compare
your result with that given in the Example (661). Also, calculate bias estimates

for R using jackknifing and bootstrapping. Use 200 bootstraps. There is only
one jackknife estimate of bias available, but you can run the bootstrap
repeatedly and see how the bias changes. Comment on your results. Don't
forget to consider the magnitude of the bias relative to the estimate.

4.17.7 Bootstrap the data for August 26 (n=25) from Example 4.8 and compare
your results with the ratio estimators N-hat(2) and V(N-hat(2)) given in the
example, and with the binomial variance estimate given below. Do 200
bootstraps and calculate Bias(boot) from eq.(3.2). Run repeatedly and see how
Bias(boot) varies. Is there an indication of appreciable bias? Recall that when
simple random sampling of individuals is assumed:

v(p) = pa/(n-1)

where n here is 2500. The difference in the two estimates reveals why the
binomial formula should never be used with cluster samples.

4.17.8 Try jackknifing the “interpenetrating sampling” results of Example 4.8,
and compare the variance you get with that given in the example. Explain the
results.



